Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

A motor in 10 minutes

A motor in 10 minutes

The motor is simply a battery, a magnet, and a small coil of wire you make yourself. There is a secret to making it (which I will of course share with you) which is at the same time clever and delightfully simple.
What you will need:

A battery holder, such as Radio Shack #270-402 (holds a “C” cell) or #270-403 (holds a “D” cell).

A battery to fit the holder.

A magnet such as Radio Shack #64-1877, #64-1895, #64-1883, #64-1879, or #64-1888.

Some magnet wire such as Radio Shack #278-1345. We want enamel coated 22 gauge (or thicker) wire. We will only need about a yard of wire, so the Radio Shack package will make a dozen motors or more.

Some heavier wire such as Radio Shack #278-1217 or #278-1216. We want bare wire of 18 or 20 gauge, so we will be removing the plastic insulation from the wires listed above. We will need less than a foot of this wire per motor.

A quicky motor

We start by winding the armature, the part of the motor that moves. To make the armature nice and round, we wind it on a cylindrical coil form, such as a ball point pen or a small AAA battery. The diameter is not critical, but should be related to the wire size. Thin wire requires a small form, thick wire requires a larger form.

Leaving a couple of inches of wire free at one end, wind 25 or 30 turns arounf the coil form. Don’t try to be neat, a little randomness will help the bundle keep its shape better. The coil will end up looking like the photo.

Now carefully pull the coil off of the form, holding the wire so it doesn’t spring out of shape.

To make the coil hold its shape permanently, we will wrap each free end of the wire around the coil a couple of times, making sure that the new binding turns are exactly opposite each other, so the coil can turn easily on the axis formed by the two free ends of wire, like a wheel.

Visit Here for more.

 

More Articles to Read

Estimating Power for ADSP-BF561 Blackfin® Processors
Estimating Power for ADSP-BF561 Blackfin® Processors
Teach Your Arduino to Switch Itself Off!
Teach Your Arduino to Switch Itself Off!
Control a tracked robot with your mind (or joystick)
Control a tracked robot with your mind (or joystick)
A 400W (1kW Peak) 100A electronic load using linear MOSFETs
A 400W (1kW Peak) 100A electronic load using linear MOSFETs
Shirt Pocket Transceiver with the Si5351 and OLED
Shirt Pocket Transceiver with the Si5351 and OLED
All metal C930e webcam
All metal C930e webcam
The Soldering Tools That Make Your Life Easier
The Soldering Tools That Make Your Life Easier
App note: Operation evaluation of ultra low ON resistance MOSFET supporting quick charge for 1 c ...
App note: Operation evaluation of ultra low ON resistance MOSFET supporting quick charge for 1 cell Lithium ion battery protection
Synthesized Sidetone
Synthesized Sidetone
App note: Application precautions: Power MOSFET application notes
App note: Application precautions: Power MOSFET application notes

Top




Shares