Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Using Servomotors with the PIC Microcontroller

Using Servomotors with the PIC Microcontroller

Servomotors are used in most RC cars, boats, helecopters and planes. They are often used to control sensitive adjustments such as steering, but have many other uses in robotics and positioning control systems.
Servomotors are basically geared down dc motors with positional feedback control, allowing for accurate positioning of the rotor, with a range of 90 degrees. They can also be modified to allow for continuous rotation.

Servomotors have three wires; usually red, black and white. The red wire is for +VDC, the black for ground, and the white is for position control. This control signal is a variable-width pulse, which can be varied from 1 to 2 ms. The pulsewidth controls the rotor position.

A 1.0 ms pulse rotates the shaft all the way counter-clockwise. A 1.5 ms pulse puts the rotor at neutral (0 degrees), and a 2.0 ms pulse will position the shaft all the way clockwise. The pulse is sent to the servo at a frequency of approximately 50 Hz. The relationship between the pulsewidth and the rotor position can be seen at figure.

Visit Here for more.

 

More Articles to Read

1968 Princeton Reverb Repairs
1968 Princeton Reverb Repairs
Skill Sunday: Power Over Ethernet for Arduino
Skill Sunday: Power Over Ethernet for Arduino
More on Color TFT Displays ~ The Big Ones — 240 X 320
More on Color TFT Displays ~ The Big Ones — 240 X 320
Vertical Pole Climbing Robot
Vertical Pole Climbing Robot
ESP8266 Weather Station Projects
ESP8266 Weather Station Projects
Single tube Lethal Nixie clock
Single tube Lethal Nixie clock
How to make a simple 1 watt audio amplifier (LM386 based)
How to make a simple 1 watt audio amplifier (LM386 based)
Flashing Binaries to DRA7xx Factory Boards Using Device Firmware Upgrade
Flashing Binaries to DRA7xx Factory Boards Using Device Firmware Upgrade
Dot² isn’t your typical coffee table
Dot² isn’t your typical coffee table
Debugging ARM Cortex-M0+ HardFaults
Debugging ARM Cortex-M0+ HardFaults

Top




Shares