Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Using multiple transformers to get more high voltage power

Using multiple transformers to get more high voltage power

Like a lot of experimenters, I started with a neon sign transformer as a high voltage source. Common neon sign transformers cost about 80 dollar and put out about 15kV (no load) and around 30 mA shorted, although you can get lower voltages and currents easily.
A neon sign transformer limits the current by its construction with a high leakage inductance, which essentially puts an inductor in series with the transformer. The impedance of the series inductor serves to limit the current, while not dissipating much power (as a resistor would). This is desirable when running a discharge tube, because the tube has a negative V/I characteristic, and if driven from a stiff voltage source, it would draw more and more current until either the tube or the transformer melted down. The same technique for current limiting is used in arc welders, although at a somewhat lower voltage and a lot more current.

However, we all want more voltage or current. Let’s look at voltage first. You could just increase the primary voltage, which will raise the secondary voltage in proportion. There are two basic limits to this approach. The first is that the insulation on the transformer isn’t necessarily good to much over the nominal voltage. They have already gone to the expedient of grounding the centertap to reduce the voltage requirement. You might get to 20-25 kV before you started having problems. The second problem is core saturation. They don’t design transformers with a lot of extra iron, because it is expensive and heavy. As you increase the voltage, you need more area in the core to keep the flux density below the saturation level for the iron. If the core saturates, you draw more power, but it essentially all goes into heat. You can see this if you hook a 0-240V autotransformer up to just about any 110V transformer, and gradually increase the voltage while monitoring the output voltage at no load. Around 150-160V, the output voltage stops rising proportionately, and if you look at the waveform on a scope, it becomes quite distorted.

Now let’s look at current. What limits the current is that series inductance. In theory, you can put in a capacitor of equivalent impedance (although opposite in sign, of course), which will allow more current to flow. The problem with this has to do with cost and availability. Say your neon transformer is rated at something like 400 VA, i.e. it draws a short circuit current of around 4 Amps. The equivalent series reactance providing the current limiting is about 25 ohms, or about 60 mH. A capacitor to just cancel this would also be 25 Ohms, or about 100 uF. The real problem, though, is that the transformer is designed to run at a particular power, and if you increase the current, you increase the heating from the I2R losses and core losses. Draw twice the current, and you have 4 times the heating, which will probably melt the insulation.

Visit Here for more.







 

More Articles to Read

The Sandwich-o-Matic will make your lunch automatically
The Sandwich-o-Matic will make your lunch automatically
Scalar Network Analyser Jr
Scalar Network Analyser Jr
An Arduino-controlled automated whiskey distillery
An Arduino-controlled automated whiskey distillery
The Rex800 looks like a dinosaur Terminator
The Rex800 looks like a dinosaur Terminator
Home Environment Monitor
Home Environment Monitor
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
Noisy ESP8266
Noisy ESP8266
Noisy ESP8266
Noisy ESP8266
App note: Noise analysis for high-speed op amps
App note: Noise analysis for high-speed op amps
Skill Sunday: Arrays
Skill Sunday: Arrays
App note: Infrared remote control implementation with MSP430FR4xx
App note: Infrared remote control implementation with MSP430FR4xx
Gesture Controlled Smart Home
Gesture Controlled Smart Home
Design for a Wideband, Differential Transimpedance DAC Output
Design for a Wideband, Differential Transimpedance DAC Output
Wrist thrusters let you fly through the water effortlessly
Wrist thrusters let you fly through the water effortlessly
Bertan/Spellman 225-20R HV power supply teardown
Bertan/Spellman 225-20R HV power supply teardown
Blinking Christmas Lights
Blinking Christmas Lights
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adding an “extra sense” with rangefinders
Adding an “extra sense” with rangefinders
This wireless game controller looks like a rug
This wireless game controller looks like a rug

Top


Shares