Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

30 volts Panel Volt Meter Using PIC MCU

30 volts Panel Volt Meter Using PIC MCU
       This is a simple application of internal 10-bit ADC(analog to digital  converter) of PIC16F676 microcontroller.you can use this  circuit  to measure  up to 30 v dc. the possible  applications are on bench top power supply or as a panel meter in various system.
Circuit description 
            MICROCHIP’S PIC16F676 is the heart and brain of this circuit .the internal adc of the mcu with a resistor network voltage  divider is used to measure the input voltage . then 3 digest of comm anode 7 segment display is used to display final converted voltage. as you can see in the schematic the displays are multiplexed with each other . means we switch on one display and put the corresponding digit on this while other two displays are off this cycle go for each of the display.
you can find more about driving multiplexed 7 segment led display from a pic mcu in application note from microchip AN557 Four Channel Digital Voltmeter with Display and Keyboard
in my circuit the refresh rate is about 50hz.

 Voltage Divider Front End



as you can seen in the schematic the 47k resistor and 10 k trim pot is connected ias a voltage divider configuration  .we all know very well that by default pic micro controller ADC reference voltage is set to vcc(+5v in this case) . so what we have to do is make such voltage divider that can divide out maximum range 30 volts to 5 volts . so we need is Vin/6 ==> 30/6 =5v   voltage divider . and to keep as less as possible attenuation on the under test voltage we have to keep the voltage divider resistor value in few thousand ohms because it takes very little current from the target but as much to drive adc of pic.

calculation   
10bit adc resolution we get 1023 maximum count
with 5 v reference  we get  5/1023 = 0.0048878 V/Count 
means if the adc count is 188 then input voltage is 188 * 0.0048878 == 0.918 volts 


but now with the voltage divider  the maximum  voltage  is 30v so the calculations  
will be  30/1023= 0.02932 volts/count
if now we get 188 then 188*0.02932==5.5 Volts


you can also increase  or decrease  the range by changing resistor network and the calculations a little bit.

the capacitor 0.1uf makes the adc input a bit stable because 10bit adc is really sensitive .
the 5.1v zener will provide over votage protection to the internal adc because it wont allow voltage more than 5.1v.
Accuracy and calibration 
overall  accuracy of this circuit is great but it totally depends on the values of 47K resistor and 10k trim pot . as fine as you can go by adjustment of the trim pot your accuracy goes fine.

calibration of this circuit is done by adjustment of the 10k trimpot around value of 7.5k or so .
all you have to do is take any standard power like 5v or 12v and apply that to the input of the resistor network and adjust the trimpot until you get correct value on the display

PCB

Software  Sorce code and Firmware
the sotware is written in c and complied using hi-tech compiler

click here download firmware  and source code 

Read more Here







 

More Articles to Read

G-code controlled drawing plotter
G-code controlled drawing plotter
An Arduino round word clock
An Arduino round word clock
The Sandwich-o-Matic will make your lunch automatically
The Sandwich-o-Matic will make your lunch automatically
Scalar Network Analyser Jr
Scalar Network Analyser Jr
An Arduino-controlled automated whiskey distillery
An Arduino-controlled automated whiskey distillery
The Rex800 looks like a dinosaur Terminator
The Rex800 looks like a dinosaur Terminator
Home Environment Monitor
Home Environment Monitor
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
Noisy ESP8266
Noisy ESP8266
Noisy ESP8266
Noisy ESP8266
App note: Noise analysis for high-speed op amps
App note: Noise analysis for high-speed op amps
Skill Sunday: Arrays
Skill Sunday: Arrays
App note: Infrared remote control implementation with MSP430FR4xx
App note: Infrared remote control implementation with MSP430FR4xx
Gesture Controlled Smart Home
Gesture Controlled Smart Home
Design for a Wideband, Differential Transimpedance DAC Output
Design for a Wideband, Differential Transimpedance DAC Output
Wrist thrusters let you fly through the water effortlessly
Wrist thrusters let you fly through the water effortlessly
Bertan/Spellman 225-20R HV power supply teardown
Bertan/Spellman 225-20R HV power supply teardown
Blinking Christmas Lights
Blinking Christmas Lights
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display

Top


Shares