Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Machine learning for the maker community

Machine learning for the maker community

At Arduino Day, I talked about a project I and my collaborators have been working on to bring machine learning to the maker community. Machine learning is a technique for teaching software to recognize patterns using data, e.g. for recognizing spam emails or recommending related products. Our ESP (Example-based Sensor Predictions) software recognizes patterns in real-time sensor data, like gestures made with an accelerometer or sounds recorded by a microphone. The machine learning algorithms that power this pattern recognition are specified in Arduino-like code, while the recording and tuning of example sensor data is done in an interactive graphical interface. We’re working on building up a library of code examples for different applications so that Arduino users can easily apply machine learning to a broad range of problems.

The project is a part of my research at the University of California, Berkeley and is being done in collaboration with Ben Zhang, Audrey Leung, and my advisor Björn Hartmann. We’re building on the Gesture Recognition Toolkit (GRT) and openFrameworks. The software is still rough (and Mac only for now) but we’d welcome your feedback. Installations instructions are on our GitHub project page. Please report issues on GitHub.

Our project is part of a broader wave of projects aimed at helping electronics hobbyists make more sophisticated use of sensors in their interactive projects. Also building on the GRT is ml-lib, a machine learning toolkit for Max and Pure Data. Another project in a similar vein is the Wekinator, which is featured in a free online course on machine learning for musicians and artists. Rebecca Fiebrink, the creator of Wekinator, recently participated in a panel on machine learning in the arts and taught a workshop (with Phoenix Perry) at Resonate ’16. For non-real time applications, many people use scikit-learn, a set of Python tools. There’s also a wide range of related research from the academic community, which we survey on our project wiki.

For a high-level overview, check out this visual introduction to machine learning. For a thorough introduction, there are courses on machine learning from coursera and from udacity, among others. If you’re interested in a more arts- and design-focused approach, check out alt-AI, happening in NYC next month.

If you’d like to start experimenting with machine learning and sensors, an excellent place to get started is the built-in accelerometer and gyroscope on the Arduino or Genuino 101. With our ESP system, you can use these sensors to detect gestures and incorporate them into your interactive projects!

Read more Here

 

More Articles to Read

Bookcase automatically opens to reveal secret lair
Bookcase automatically opens to reveal secret lair
PCI Express High Performance Reference Design
PCI Express High Performance Reference Design
Muxtronics open source 12V powerbank
Muxtronics open source 12V powerbank
TI’s Little Professor
TI’s Little Professor
App note: Testing inductors at application frequencies
App note: Testing inductors at application frequencies
1968 Princeton Reverb Repairs
1968 Princeton Reverb Repairs
Skill Sunday: Power Over Ethernet for Arduino
Skill Sunday: Power Over Ethernet for Arduino
More on Color TFT Displays ~ The Big Ones — 240 X 320
More on Color TFT Displays ~ The Big Ones — 240 X 320
Magnetic Rotary Encoder
Magnetic Rotary Encoder
Vertical Pole Climbing Robot
Vertical Pole Climbing Robot

Top




Shares