Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Implementation of a Three-Phase Electronic Watt-Hour Meter Using MSP430F471xx

Implementation of a Three-Phase Electronic Watt-Hour Meter Using MSP430F471xx

This application report describes the implementation of a three phase electronic electricity meter using the Texas Instruments MSP430F471xx system-on-chip (SOC) processor. This application report includes the necessary information with regard to metrology software, hardware and calibration procedures for this single chip implementation. Results are included at the end, which show performance of this device for three phase using current transformers as sensors.

The MSP430F471xx devices belong to the MSP430F4xx family of devices. These devices find its application in energy measurement and have the necessary architecture to support it. The MSP430F471xx devices have a powerful 16 MHz CPU with MSP430CPUx architecture. The analog front-end consists of up to seven analog to digital converters (ADC) based on a 2nd order sigma-delta architecture that supports differential inputs. The sigma-delta ADCs (SD16) that have a resolution of 16-bits can be configured and grouped together for simultaneous sampling of voltages and currents on the same trigger. Each SD16 supports a common mode voltage of up to -1 V and enables all sensors to be referenced to ground. In addition, it also has an integrated gain stage to support gains up to 32 for amplification of low-output sensors. A 32-bit x 32-bit HW multiplier on this chip can be used to further accelerate math intensive operations during energy computation. The SW supports calculation of various parameters for total three phase and for each individual phases. The key parameters calculated during energy measurements are: RMS current and voltage, Active and reactive power, power factor and frequency. The entire operations take about 1/3rd of the processing power and use about a tenth of resources. The application note has complete metrology source code provided as a zip file.

Read more Here

Pinned onto

Related Pins

MPPT Solar Charger Testing
MPPT Solar Charger Testing
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
ESLOV is the amazing new IoT invention kit from Arduino
ESLOV is the amazing new IoT invention kit from Arduino
μPC1237 based 2 channel speaker protector
μPC1237 based 2 channel speaker protector
ESP8266 WeatherStation Color
ESP8266 WeatherStation Color
Keyless piano project using Arduino uno
Keyless piano project using Arduino uno
IoT Wardrobe
IoT Wardrobe
Automotive CAN Transceivers
Automotive CAN Transceivers
Restoring a vintage Xerox Alto day 8: it boots!
Restoring a vintage Xerox Alto day 8: it boots!
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Reverse engineering a server CPU voltage regulator module
Reverse engineering a server CPU voltage regulator module
Building a sweet plastic MIDI controller
Building a sweet plastic MIDI controller
A DIY interactive book that uses digital gestures
A DIY interactive book that uses digital gestures
Arduino Stopwatch
Arduino Stopwatch
App note: General overview of IR transmission in free ambient
App note: General overview of IR transmission in free ambient
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
App note: Using Vishay infrared receivers in a Wi-Fi environment
App note: Using Vishay infrared receivers in a Wi-Fi environment
Skill Sunday: Uploading to your Arduino via a Network
Skill Sunday: Uploading to your Arduino via a Network
μPC1237 based 2 channel speaker protector
μPC1237 based 2 channel speaker protector
One Phase Power Meter
One Phase Power Meter

Top


Shares