Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Wien Bridge Oscillator using Opamp

Wien Bridge Oscillator using Opamp

Oscillator circuits are the ones which produces certain waveform with specified frequency. These kind of circuits come in handy when there is a need of signal source  for any specified application. Here i have built a primitive Wien bridge oscillator using Opamp which is minimal in size and makes a perfect signal source for your circuits.

WIEN BRIDGE OSCILLATOR CIRCUIT:

wien-bridge-oscillator-circuit-diagram-opamp

 

WORKING OF CIRCUIT:

This is a Wien bridge Oscillator. Basically it is just an amplifier with one positive feedback (the series and parallel RC network) and one negative feedback (the 1.8k resistor, the potentiometer and the incandescent bulb). The idea behind it is that the series/parallel RC network has an exact signal attenuation of 3 times (-6dB). That’s because both networks resonate at the same frequency but one is a low pass filter and the other a high pass filter. Each filter has a -3dB at the center frequency. When combined the attenuation becomes -6dB.

In order to make it work the amplifier must have an exact gain of 3 (6dB). At anything below 3 oscillations will not start, and at anything above 3 the oscillations will rise into cut off distortion. No matter how hard you try you will never be able to set the gain at exactly 3, due to thermal drift of semiconductors and variation of the supply rails and such. What Hewlett Packard realized is that you can use a light bulb to stabilize the amplitude. That’s because an incandescent light bulb has a Positive Thermal Coefficient (PTC). That means that when idle it has low resistance and when current starts passing through it its resistance increases.

Let’s trace back the processes in the Oscillator. With the potentiometer you set the gain to be slightly above 3. The oscillations start rising, that would normally lead to cut off, and more current starts flowing through the bulb. As the current increases, so does the bulb’s resistance. That leads to a strengthened negative feedback, that decrease the gain below 3. So the output starts fading away. As it decreases less current flows through the bulb, and it’s resistance starts falling too. That leads to a weakened negative feedback and subsequently a higher gain than 3. So the output starts rising. This cycle continues until an equilibrium state is reached and the output is stabilized.

The few advantages this method has, is that due to the much lower time constant (Tau) of the light bulb, than the oscillations, the distortion it induces is much lower than any other type of stabilization. That’s because other types try to enforce the correction in every cycle of the wave, introducing distortion in each one of them. This method enforces correction at a much lower time constant (a few Hz), because the filament needs time to heat up and cool down again. Another apparent advantage is stability over a wide range of supply voltages.

One of the disadvantages is that if you want a wide variety of frequencies, you need to take some precautions in the circuitry, otherwise you need to readjust the negative feedback for lowest distortion.

OUTPUT WAVE:

sine-wave-wien-bridge-oscillator

NOTE:

  • The Opamp used is IC 741.
  • You can use the small lamps you find in a Christmas tree or any other decoration lights

The post Wien Bridge Oscillator using Opamp appeared first on Gadgetronicx.

Read more Here

Pinned onto

Related Pins

BQ24650 Based MPPT li-ion Battery Chage Controller With Software MPPT adjust and 3 Channel LED P ...
BQ24650 Based MPPT li-ion Battery Chage Controller With Software MPPT adjust and 3 Channel LED PWM dimming.
Play beautiful music on an Arduino thumb piano
Play beautiful music on an Arduino thumb piano
40 dB attenuator
40 dB attenuator
A multimeter heads-up display with Arduino glasses
A multimeter heads-up display with Arduino glasses
Robotic fish swims under Arduino control
Robotic fish swims under Arduino control
Arduino Xylophone
Arduino Xylophone
MPPT Solar Charger Testing
MPPT Solar Charger Testing
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
ESLOV is the amazing new IoT invention kit from Arduino
ESLOV is the amazing new IoT invention kit from Arduino
μPC1237 based 2 channel speaker protector
μPC1237 based 2 channel speaker protector
ESP8266 WeatherStation Color
ESP8266 WeatherStation Color
Keyless piano project using Arduino uno
Keyless piano project using Arduino uno
IoT Wardrobe
IoT Wardrobe
Automotive CAN Transceivers
Automotive CAN Transceivers
Restoring a vintage Xerox Alto day 8: it boots!
Restoring a vintage Xerox Alto day 8: it boots!
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Reverse engineering a server CPU voltage regulator module
Reverse engineering a server CPU voltage regulator module
Building a sweet plastic MIDI controller
Building a sweet plastic MIDI controller
A DIY interactive book that uses digital gestures
A DIY interactive book that uses digital gestures
Arduino Stopwatch
Arduino Stopwatch

Top


Shares