Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Mechaduino: an open-source industrial servo motor for 3D printers, CNC machines & more

Mechaduino: an open-source industrial servo motor for 3D printers, CNC machines & more

Tropical Labs, an electromechanical systems lab based in Washington, DC., has launched a Kickstarter campaign for Mechaduino, an open-source industrial servo motor for 3D printers and other machines. Mechaduino can be used as a drop-in replacement for NEMA 17 stepper motors and drivers.

The Mechaduino has already been tested on a RepRap Prusa i3 3D printer, functioning as a drop-in replacement for each stepper motor and stepper driver of the printer. “Closed loop motors run more efficiently since they only apply the required torque to track a position command,” explained Tropical Labs’ in a Hackaday project log. “Stepper motors must apply their maximum torque all the time. This means that the closed loop motor will run much cooler and can apply much higher peak torques.”

As the project gathered steam, the team’s ambition’s grew, with further objectives made for the new servo. These included anti-clogging capabilities, PID auto tuning, and adjustable commutation profiles. The team decided to launch a Kickstarter in response to the positive messages coming from Hackaday, and reached their target goal long before the close of the campaign.

While Tropical Labs has already raised more than double its Kickstarter goal, backers from anywhere in the world can still secure early copies of the Mechaduino until the campaign closes on July 21. A Mechaduino PCB can be secured for $45 and a Servo for $60, with discounts on offer for larger orders. Estimated delivery for all orders is September 2016.

Source: 3ders.org

Pinned onto ,

Related Pins

IoT Wardrobe
IoT Wardrobe
Automotive CAN Transceivers
Automotive CAN Transceivers
Restoring a vintage Xerox Alto day 8: it boots!
Restoring a vintage Xerox Alto day 8: it boots!
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Reverse engineering a server CPU voltage regulator module
Reverse engineering a server CPU voltage regulator module
Building a sweet plastic MIDI controller
Building a sweet plastic MIDI controller
Arduino Stopwatch
Arduino Stopwatch
App note: General overview of IR transmission in free ambient
App note: General overview of IR transmission in free ambient
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
App note: Using Vishay infrared receivers in a Wi-Fi environment
App note: Using Vishay infrared receivers in a Wi-Fi environment
Skill Sunday: Uploading to your Arduino via a Network
Skill Sunday: Uploading to your Arduino via a Network
One Phase Power Meter
One Phase Power Meter
WiFi Toilet Vacancy Sensor
WiFi Toilet Vacancy Sensor
HAL 9000 reimagined as a useless machine
HAL 9000 reimagined as a useless machine
Using the XMEGA Clock System
Using the XMEGA Clock System
An Arduino VU meter for classrooms
An Arduino VU meter for classrooms
DIY Calculator
DIY Calculator
Build your own robotic vacuum from scratch
Build your own robotic vacuum from scratch
An animatronic talking takeout container
An animatronic talking takeout container
Restoring a Xerox Alto day 7: experiments with disk and Ethernet emulators
Restoring a Xerox Alto day 7: experiments with disk and Ethernet emulators

Top


Shares