Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Sine Wave Generator Is Crystal Accurate

Sine Wave Generator Is Crystal Accurate

This application note discusses how to gain greater accuracy and less drift by deriving a sine wave from a digital source. This results in a stable, frequency-accurate since wave, which is ideal for servos, test equipment, and telecommunications systems.

Servos, test equipment, and telecommunications systems are among the applications that require stable, frequency-accurate sine-wave sources. Many such sine-wave oscillators are available, but finding one with a satisfactory level of absolute accuracy and drift can be a problem. You can get greater accuracy and less drift by deriving the sine wave from a digital source. Because square waves comprise a fundamental at the square-wave frequency plus an infinite number of odd harmonics, you can obtain the desired fundamental sinusoid by removing the harmonics with a lowpass filter. Switched-capacitor filters suit this application (Figure 1). IC3 is an 8th-order, lowpass Butterworth type.

Read more Here

Pinned onto

Related Pins

Robotic fish swims under Arduino control
Robotic fish swims under Arduino control
Arduino Xylophone
Arduino Xylophone
MPPT Solar Charger Testing
MPPT Solar Charger Testing
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
ESLOV is the amazing new IoT invention kit from Arduino
ESLOV is the amazing new IoT invention kit from Arduino
μPC1237 based 2 channel speaker protector
μPC1237 based 2 channel speaker protector
ESP8266 WeatherStation Color
ESP8266 WeatherStation Color
Keyless piano project using Arduino uno
Keyless piano project using Arduino uno
IoT Wardrobe
IoT Wardrobe
Automotive CAN Transceivers
Automotive CAN Transceivers
Restoring a vintage Xerox Alto day 8: it boots!
Restoring a vintage Xerox Alto day 8: it boots!
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Reverse engineering a server CPU voltage regulator module
Reverse engineering a server CPU voltage regulator module
Building a sweet plastic MIDI controller
Building a sweet plastic MIDI controller
A DIY interactive book that uses digital gestures
A DIY interactive book that uses digital gestures
Arduino Stopwatch
Arduino Stopwatch
App note: General overview of IR transmission in free ambient
App note: General overview of IR transmission in free ambient
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
App note: Using Vishay infrared receivers in a Wi-Fi environment
App note: Using Vishay infrared receivers in a Wi-Fi environment
Skill Sunday: Uploading to your Arduino via a Network
Skill Sunday: Uploading to your Arduino via a Network

Top


Shares