Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Assess Power-Supply Noise Rejection in Low-Jitter PLL Clock Generators

Assess Power-Supply Noise Rejection in Low-Jitter PLL Clock Generators

This article discusses the effects of power-supply noise interference on PLL-based clock generators, and describes several measurement techniques for evaluating the resulting deterministic jitter (DJ). Derived relationships show how frequency-domain spur measurements can be used to evaluate timing-jitter behavior. Laboratory bench-test results are used to compare the measurement techniques, and demonstrate how to reliably assess the power-supply noise rejection (PSNR) performance of a reference clock generator.

Clock generators that employ PLLs are widely used in network equipment for generating high-precision and low-jitter reference clocks or for maintaining a synchronized network operation. Most clock oscillators give their jitter or phase-noise specification using an ideal, clean power supply. In a practical system environment, however, the power supply can suffer from interference due to on-board switching supplies or noisy digital ASICs. To achieve the best performance in a system design, it is important to understand the effects of such interference.

First we will examine the basic power-supply noise rejection (PSNR) characteristics of a PLL-based clock generator. We will then explain how to extract timing-jitter information from measurements taken in the frequency domain. These techniques are then applied and several different measurement methodologies are compared using lab bench testing. Finally, we will summarize the merits of the preferred approach.

Read more Here

Pinned onto

Related Pins

Arduino Xylophone
Arduino Xylophone
MPPT Solar Charger Testing
MPPT Solar Charger Testing
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
Design and Application Guide of Bootstrap Circuit for High-Voltage Gate-Drive IC
ESLOV is the amazing new IoT invention kit from Arduino
ESLOV is the amazing new IoT invention kit from Arduino
μPC1237 based 2 channel speaker protector
μPC1237 based 2 channel speaker protector
ESP8266 WeatherStation Color
ESP8266 WeatherStation Color
Keyless piano project using Arduino uno
Keyless piano project using Arduino uno
IoT Wardrobe
IoT Wardrobe
Automotive CAN Transceivers
Automotive CAN Transceivers
Restoring a vintage Xerox Alto day 8: it boots!
Restoring a vintage Xerox Alto day 8: it boots!
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Reverse engineering a server CPU voltage regulator module
Reverse engineering a server CPU voltage regulator module
Building a sweet plastic MIDI controller
Building a sweet plastic MIDI controller
A DIY interactive book that uses digital gestures
A DIY interactive book that uses digital gestures
Arduino Stopwatch
Arduino Stopwatch
App note: General overview of IR transmission in free ambient
App note: General overview of IR transmission in free ambient
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
Sonicare toothbrush teardown: microcontroller, H bridge, and inductive charging
App note: Using Vishay infrared receivers in a Wi-Fi environment
App note: Using Vishay infrared receivers in a Wi-Fi environment
Skill Sunday: Uploading to your Arduino via a Network
Skill Sunday: Uploading to your Arduino via a Network
μPC1237 based 2 channel speaker protector
μPC1237 based 2 channel speaker protector

Top


Shares