Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Simulating FPGA Power Integrity Using S-Parameter Models

Simulating FPGA Power Integrity Using S-Parameter Models

Before simulating the frequency domain self-impedance profiles of a PDN, it is important to establish expectations for the simulation results. To do this, an understanding of the fundamental concepts must be attained:

  • Series-Resonance Circuit and Impedance Minimums
  • Parallel-Resonance Circuit and Impedance Maximums
  • Frequency Components of Electrical Signals
  • S-Parameter Model vs. Lumped RLC Model for Decoupling Capacitors

The purpose of a Power Distribution Network (PDN) is to provide power to electrical devices in a system. Each device in a system not only has its own power requirements for its internal operation, but also a requirement for the input voltage fluctuation of that power rail. For Xilinx Kintex™7 and Virtex®-7 FPGAs, the analog power rails have an input voltage fluctuation requirement of not more than 10 mV peak-to-peak from the 10 kHz to the 80 MHz frequency range. The self generated voltage fluctuation on the power rails is a function of frequency and can be described by Ohm’s Law: Voltage (frequency) = Current (frequency) * Self-Impedance (frequency).

Thus, if the user determines the self-impedance (frequency) and knows the current (frequency) of the PDN, then the voltage (frequency) can be determined. The self-impedance (frequency) can easily be determined by simulating the frequency domain self-impedance profile of the PDN and is, thus, the subject of this application note.

Read more Here

 

More Articles to Read

DIY thermal imaging
DIY thermal imaging
Teardown, experiments and calibration of an Ist-Rees laser spectrum analyzer
Teardown, experiments and calibration of an Ist-Rees laser spectrum analyzer
IR thermometer hacked into an IR camera
IR thermometer hacked into an IR camera
Real Time Planet Tracking System
Real Time Planet Tracking System
Bookcase automatically opens to reveal secret lair
Bookcase automatically opens to reveal secret lair
PCI Express High Performance Reference Design
PCI Express High Performance Reference Design
Muxtronics open source 12V powerbank
Muxtronics open source 12V powerbank
TI’s Little Professor
TI’s Little Professor
App note: Testing inductors at application frequencies
App note: Testing inductors at application frequencies
1968 Princeton Reverb Repairs
1968 Princeton Reverb Repairs

Top




Shares