Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

DIYcrap audio mixer #3. FV-1 Reverb

DIYcrap audio mixer #3. FV-1 Reverb

This is part 3 of “building an audio mixer with effects”. For part 1 go here, and for part 2, go here.

The mixer is working fine, and already has got two PT2399 circuits for delay. But now it is time to add some reverb. For reverb I decided to use an FV-1 based design. Experimental Noize has some nice small boards built around this chip, preprogrammed for different purposes. I decided to go for the SKRM-C8-R02 Mono-In/Stereo Out reverb and delay module.

I wanted to use a rotary switch to select between the different programs. The SKRM data sheet proposes to use a 74HC148 8 to 3 Line Priority Encoder for this purpose. Hence, there is a need for a small PCB to mount the SKRM and the 74HC148 (in addition to some additional components). Although I have used KiCad and OSH Park for PCB production previously, I wanted to test Fritzing for this small project.

I drew a quick diagram in Fritzing, swithced to PCB-view and the auto-router took care of the rest (at least most of it).

After a about ten days the card arrived in my mailbox.

The board came out quite nicely. Although I am very satisfied with the result, I do not think I will use Fritzing for my next project. OSH Park and other alternatives are way cheaper, and I think the Fritzing software is a bit limited compared to Eagle or KiCad (and even if the Fritzing-software is very simple to use, Eagle and KiCad are not that difficult to learn). The files are available at the Fritzing-site in case you are interested.

It took about 10 minutes to add the few components :-). It is only a 74HC148, a capacitor and a pull up resistor network.

Then I slammed the SKRM on top of it, soldered the connectors, and started jamming with some heavy reverb. But wait, I forgot one thing, namely to securely mount the PCB inside the mixer. A simple solution is to screw standoffs to the front panel, but the screws would interfere with the front panel design. I could also glue the standoffs to the front panel, but I just hate to glue things together when there is a slight chance that I might want to dismantle it later.

Hence, I created a plate to screw the PCB standoffs to, that is fastened with the rotary switch. It is designed in OpenSCAD and 3D-printed.

The above picture show how it looks like inside the mixer. Notice that the plate (in pink) is fastened together with the rotary switch.

The above picture show how the mixer looks like inside. The SKRM is driven by a LM7805 which is connected to the +12V rail (the blue heatsink can be seen on the bottom part of the picture). The circuit draws about 170mA, even if the data sheet states it should be less than 75mA. The reason? I do not know.

DIYcrap mixer. Now with reverb.

Read more Here







 

More Articles to Read

Peeqo is a desktop bot that communicates through GIFs
Peeqo is a desktop bot that communicates through GIFs
Using a Programmable Input Multiplier to Minimize Integer Boundary Spurs
Using a Programmable Input Multiplier to Minimize Integer Boundary Spurs
Serial seven segment LED display shield
Serial seven segment LED display shield
G-code controlled drawing plotter
G-code controlled drawing plotter
An Arduino round word clock
An Arduino round word clock
The Sandwich-o-Matic will make your lunch automatically
The Sandwich-o-Matic will make your lunch automatically
Scalar Network Analyser Jr
Scalar Network Analyser Jr
An Arduino-controlled automated whiskey distillery
An Arduino-controlled automated whiskey distillery
The Rex800 looks like a dinosaur Terminator
The Rex800 looks like a dinosaur Terminator
Home Environment Monitor
Home Environment Monitor
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
Noisy ESP8266
Noisy ESP8266
App note: Noise analysis for high-speed op amps
App note: Noise analysis for high-speed op amps
Skill Sunday: Arrays
Skill Sunday: Arrays
App note: Infrared remote control implementation with MSP430FR4xx
App note: Infrared remote control implementation with MSP430FR4xx
Gesture Controlled Smart Home
Gesture Controlled Smart Home
Design for a Wideband, Differential Transimpedance DAC Output
Design for a Wideband, Differential Transimpedance DAC Output
Wrist thrusters let you fly through the water effortlessly
Wrist thrusters let you fly through the water effortlessly
Bertan/Spellman 225-20R HV power supply teardown
Bertan/Spellman 225-20R HV power supply teardown

Top


Shares