Browse over 10,000 Electronics Projects

AC Power Control with Thyristor – Phase Angle Control using triac with PIC16F877A

AC Power Control with Thyristor – Phase Angle Control using triac with PIC16F877A

Let’s assume we’re using a BT139-600 triac. The maximum required trigger current is 35mA. Although the typical trigger current is lower, we should consider the maximum required trigger current. This is 35mA for quadrants I, II and III. We will only be firing in quadrants I and III. So, that is ok for us – we need to consider 35mA current.
If you aren’t sure what quadrants are, here’s a short description. First take a look at this diagram:
 Fig. 2 – Triac Triggering Quadrants
If you look back again at the diagram, you’ll see that we’re driving gate from MT2. So, we can say that, with respect to MT1, when MT2 is positive, so is the gate. With respect to MT1, when MT2 is negative, so is the gate. From the diagram above, you can see that these two cases are in quadrants I and III. This is what I meant when I mentioned that we’re driving only in quadrants I and III.


The driver in the circuit is the MOC3021. This is a random phase optically isolated triac output driver. When the LED is turned on, the triac in the MOC3021 turns on and drives the main triac in the circuit. It is a “random phase” driver meaning that it can be driven on at any time during the drive signal, as is required for phase angle control. There are other drivers that only allow drive at the zero-crossing. These cannot be used for phase angle control as phase angle control requires drive after zero-crossing. For guaranteeing that the triac is latched, the LED side of the MOC3021 must be driven with at least 15mA current. The maximum current rating for the LED is 60mA. The peak current rating for the triac is 1A. You should find that we have stayed within these limits in the design.
Here’s the output waveform:

 Fig. 3 – Triac firing with 2 ms delay

Green: Input AC
Yellow: AC Output after phase angle control
Pink: Gate Drive signal