Browse over 10,000 Electronics Projects using the Page Numbering provided at the bottom of each Page.

Introduction and block diagram of all the modules — Jupiter Modular Receiver

Introduction and block diagram of all the modules  — Jupiter Modular Receiver

SECTION 1  —  Introduction and block diagram of all the modules


Click for the Master Index to this project

You’ll find many good homebrew receivers offered for Jupiter reception and I add 1 more design to the fray. Click for the NASA list of Receivers for Radio Jove. A treasure trove of information lies at the NASA Radio Jove project website.

My hobby: Designing and making scratch receivers evolved skyward once I learned that amateurs around the globe are making radios to receive signals from space.  I share Radionova 1 as fodder for your own experiments and to promote this growing, science-based, fun, hobby.

Many authors have written how to start into radio astronomy and I’ll provide a couple of links:

[1] From SARA — The Society of Amateur Radio Astronomers. Click for their getting started web page.

[2]  Yahoo Groups for the Radio Jove enthusiast. This will connect you to Dr. Eng. Victor Herrero-Arrieta and his links, email posts and further; access to qualified, helpful people for your questions and general information. Victor’s radio astronomy blog is linked from my blog.

Block Diagram

[1] From the block diagram above, the other sections should make sense

[2] I built Radionova 1 in discrete modules to allow stage isolation, future changes, module A/B testing – and re-purposing these modules in other receiver systems.

[3] I follow the NASA Jove project of choosing a receive frequency near 20.1 MHz. Full decametric reception ( 20-40 MHz ) requires an alternate local oscillator plus modification to 1 low-pass filter on the main receiver — and also the front-end filter.

Click for Section 2   — pending very soon —

Above — Early photo of 4 of the modules. I’ll update this page with more photos when all the modules are built.

 

More Articles to Read

Single-Sided USB Charger
Single-Sided USB Charger
A FPGA controlled RGB LED MATRIX for Incredible Effects – the Hardware
A FPGA controlled RGB LED MATRIX for Incredible Effects – the Hardware
Using Nanotimers to Reduce IoT System Power Consumption by an Order of Magnitude
Using Nanotimers to Reduce IoT System Power Consumption by an Order of Magnitude
Replace a microwave’s beeping with the Windows XP startup sound
Replace a microwave’s beeping with the Windows XP startup sound
A DIY Laser Scanning Microscope
A DIY Laser Scanning Microscope
Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor
Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor
ESP8266 LED lighting: QuinLED v2.6 PCB
ESP8266 LED lighting: QuinLED v2.6 PCB
Switching LVDS Graphics in a Laptop Computer
Switching LVDS Graphics in a Laptop Computer
Teleknitting: TV-based string art
Teleknitting: TV-based string art
DIY Bubble Machine
DIY Bubble Machine
Start your day with Nerf target practice!
Start your day with Nerf target practice!
Teardown of a Peaktech 6225A
Teardown of a Peaktech 6225A

Top




Shares