Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Scanning Microwave Microscopy for Quantitative Imaging of Biological Samples

Scanning Microwave Microscopy for Quantitative Imaging of Biological Samples

The Scanning Microwave Microscope (SMM) merges the nanoscale imaging capabilities of an atomic force microscope (AFM) with the high-frequency broadband (from MHz to GHz) impedance measurement accuracy of a vector network analyzer (VNA) (Figure 1). The typical frequency range of the combined SMM is between 1-20 GHz (Huber et al. 2010). It allows characterizing electric, dielectric, and magnetic properties of materials at microwave frequencies with nanometer lateral resolution. Using the microwave signal, impedance nanoscale imaging and doping profiling can be performed. Typically the SMM is operated in reflection mode, whereby the ratio of the reflected and incident electromagnetic waves, the so called S11 scattering parameter, is measured by the VNA at each pixel of the AFM tip-sample contact point.

As such a microwave image is generated pixel by pixel, simultaneously to the topographical image. Imaging speeds are fast resulting in a typical acquisition time of one minute per image. There are mainly two different imaging modes in SMM. The first is quantitative dopant profiling by means of differential capacitance (also called dC/dV), which is a widely used technique for semiconductor failure analysis and detecting leakages in solid state devices with nanometer resolution (Huber et al 2012). The dC/dV mode relies on a low frequency (kHz) modulation of the GHz S11 signal using the Dopant Profile Measurement Module (DPMM). It allows tuning the semiconductor depletion zone with low frequency and probing the doping concentration through the native oxide interface at GHz frequency. The second SMM mode which is mainly used in life science is complex impedance imaging and it is based directly on the scattering S11 signal at GHz frequency (Gramse et al 2014).

Read more Here

 

More Articles to Read

Estimating Power for ADSP-BF561 Blackfin® Processors
Estimating Power for ADSP-BF561 Blackfin® Processors
Teach Your Arduino to Switch Itself Off!
Teach Your Arduino to Switch Itself Off!
Control a tracked robot with your mind (or joystick)
Control a tracked robot with your mind (or joystick)
A 400W (1kW Peak) 100A electronic load using linear MOSFETs
A 400W (1kW Peak) 100A electronic load using linear MOSFETs
Shirt Pocket Transceiver with the Si5351 and OLED
Shirt Pocket Transceiver with the Si5351 and OLED
All metal C930e webcam
All metal C930e webcam
The Soldering Tools That Make Your Life Easier
The Soldering Tools That Make Your Life Easier
App note: Operation evaluation of ultra low ON resistance MOSFET supporting quick charge for 1 c ...
App note: Operation evaluation of ultra low ON resistance MOSFET supporting quick charge for 1 cell Lithium ion battery protection
Synthesized Sidetone
Synthesized Sidetone
App note: Application precautions: Power MOSFET application notes
App note: Application precautions: Power MOSFET application notes

Top




Shares