Browse over 10,000 Electronics Projects using the Page Numbering provided at the bottom of each Page.

Make an Optical Encoder

Make an Optical Encoder

An optical encoder measures how far something has moved, optically. It does this by looking at a pattern of alternating black-and-white, and counting number of transitions.
A typical optical encoder will either use a break-beam sensor, or a single pattern (dual for quad-phase) of alternating black and white. This is done because most designs are in a well-controlled environment, where there are reasonably well known, fixed levels for dark and light. In this case, we had a far less controlled environment:

  • The optical encoder went directly on the wheel. As a result, there was an ambient light level that varied by several orders of magnitude.
  • The optical encoder disk could be positioned at different distances from the sensor.
  • The optical encoder disk could be printed on a variety of printers, where toner may either be more or less reflective than paper, by varying amounts.

For these reasons, traditional hobbyist optical encoders tend to be complete disasters. To mitigate some of these problems, we used a differential design. In so much as the photosensors matched, so that the design was very insensitive to ambient light level, or how much light was reflected from the surface, so long as different amounts of light were reflected.

Using the phototransistors back-to-back as a voltage divider (rather than amplifying first) let the design to have a huge dynamic range.

The major disadvantage of the differential design was decreased resolution. We needed four rings for a quad-phase design, instead of two. As a result, the inner-most ring was on a much smaller radius, and so could not have very dense stripes. In addition, the photosensors needed to be reasonably well matched.

Visit Here for more.

 

More Articles to Read

Single-Sided USB Charger
Single-Sided USB Charger
A FPGA controlled RGB LED MATRIX for Incredible Effects – the Hardware
A FPGA controlled RGB LED MATRIX for Incredible Effects – the Hardware
Using Nanotimers to Reduce IoT System Power Consumption by an Order of Magnitude
Using Nanotimers to Reduce IoT System Power Consumption by an Order of Magnitude
Replace a microwave’s beeping with the Windows XP startup sound
Replace a microwave’s beeping with the Windows XP startup sound
A DIY Laser Scanning Microscope
A DIY Laser Scanning Microscope
Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor
Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor
ESP8266 LED lighting: QuinLED v2.6 PCB
ESP8266 LED lighting: QuinLED v2.6 PCB
Switching LVDS Graphics in a Laptop Computer
Switching LVDS Graphics in a Laptop Computer
Teleknitting: TV-based string art
Teleknitting: TV-based string art
DIY Bubble Machine
DIY Bubble Machine
Start your day with Nerf target practice!
Start your day with Nerf target practice!
Teardown of a Peaktech 6225A
Teardown of a Peaktech 6225A

Top




Shares