Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

PIC18LF2550 Wireless Servo Controller

PIC18LF2550 Wireless Servo Controller

It can be used for remote monitoring, as a webcam, or for color/object tracking. The basis for a pan-tilt configuration is the PIC18LF2550 Wireless Servo Controller, which allows to control two servos remotely with very little latency.
The power supply uses a 9 volt battery and a TC1264-3.0V high-accuracy low-dropout linear voltage regulator to provide a stable 3 volt supply for the microcontroller and the transceiver. An additional TC1264-5.0V high-accuracy low-dropout linear voltage regulator is used to provide a stable 5 volt supply for the servos. 1uF (microFarad) polarized decoupling capacitors are necessary on the outputs of the voltage regulators to prevent spikes or ripples. A wall wart power supply as low as 5.3V can be substituted for the 9 Volt battery.

Receiver Microcontroller

The microcontroller used was a Microchip PIC18LF2550. I modified the PIC18F2550 Tiny PIC Bootloader assembly file so I could use a 10MHz crystal/resonator at 57,600 baud (the modified bootloader can be found at the bottom of the page). The PIC18LF2550 runs at a maximum speed of 16MHz (4 MIPs) with a 3 Volt power supply; however, I had 10MHz and 20MHz ceramic resonators on-hand, so I ran at the fastest ‘safe’ speed possible (I could overclock the PIC by running it at 20MHz with a 3 volt supply, but it would be running out of spec. so it may not operate reliably). The firmware was written in C (using CCS PICC) and can be found at the bottom of the page, in addition to a generic RF-24G driver for Laipac TRW-24G 2.4GHz transceivers. R1 is a pull-up resistor necessary for operation. C1 is a stabilizing capacitor that is used for the onboard USB voltage regulator (which is not utilized in this project). The component marked ‘RES’ is a 10MHz resonator. The LED connected to pin C4 is used to indicate data reception and can be omitted if necessary (although it is helpful for debuging).

Visit Here for more.







 

More Articles to Read

App note: Infrared remote control implementation with MSP430FR4xx
App note: Infrared remote control implementation with MSP430FR4xx
Gesture Controlled Smart Home
Gesture Controlled Smart Home
Design for a Wideband, Differential Transimpedance DAC Output
Design for a Wideband, Differential Transimpedance DAC Output
Wrist thrusters let you fly through the water effortlessly
Wrist thrusters let you fly through the water effortlessly
Bertan/Spellman 225-20R HV power supply teardown
Bertan/Spellman 225-20R HV power supply teardown
Blinking Christmas Lights
Blinking Christmas Lights
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adding an “extra sense” with rangefinders
Adding an “extra sense” with rangefinders
This wireless game controller looks like a rug
This wireless game controller looks like a rug
How to run your ESP8266 for years on a battery
How to run your ESP8266 for years on a battery
Calibration of a 3-Phase Energy Meter Board on the ADE7754
Calibration of a 3-Phase Energy Meter Board on the ADE7754
Making beats on a tiny Arduino DJ controller
Making beats on a tiny Arduino DJ controller
Qinsi-QS5100 Sn63Pb37 solder profile
Qinsi-QS5100 Sn63Pb37 solder profile
Water Detection System
Water Detection System
Professional Hi-Fi 15W Tube Amplifier circuit
Professional Hi-Fi 15W Tube Amplifier circuit
This Arduino machine will judge how sick your ollies are
This Arduino machine will judge how sick your ollies are
Turn an old payphone into a boombox for ’90s hits
Turn an old payphone into a boombox for ’90s hits
Big F’n 3D printer build
Big F’n 3D printer build
Temperature alarm for boiling milk
Temperature alarm for boiling milk
QuadBot is a 3D-printable walking robot for everyone
QuadBot is a 3D-printable walking robot for everyone

Top


Shares