Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Designing an Opamp Headphone Amplifier

Designing an Opamp Headphone Amplifier

This article discusses several opamp-based headphone amplifier circuits, including suggestions for selecting opamps, input coupling and filtering, high current output stages and power supply options. There are no recommendations for specific opamp brands or models.
Entire books cover the subject of interpreting opamp specifications. Here are a few guidelines for choosing opamps when designing headphone amplifiers. Opamps inch closer to the “ideal” with every succeeding generation. Modern devices are internally compensated for stability, have slew rates going through the roof and noise and distortion numbers at threshold of measurement. There are even opamps that will run off a 1-volt supply. For portable devices, the power supply requirements should be the first consideration. The majority of modern opamps will run with as little as ±4V, but low voltages may degrade performance. Check the manufacturer’s VCC specs to confirm that low voltage operation is, in fact, recommended. The most common battery supply voltages are ±1.5V, ±3V, ±4.5V and ±9V. Single supplies are another possibility. Keep in mind also that the idling current for the entire amplifier must also be low – around 10mA or less for good battery life. For more information, see the section on battery power options below.

Opamp performance specifications are an unreliable indicator of sound quality. So long as the numbers are below audibility thresholds, specs that are magnitudes better than the averages will not necessarily translate into better sound. Regardless of type (bipolar or FET), modern opamps do very well on the test bench. Total harmonic distortion figures are so low (typically less than 0.1%) that datasheets have stopped listing them. Look for noise specifications, listed as “noise density” in units of nV/Ö(Hz), of 25 or less, slew rates of 5uV/sec or more and “wide” unity gain-bandwidths of 3 MHz and higher.

Visit Here for more.

 

More Articles to Read

DIY thermal imaging
DIY thermal imaging
Teardown, experiments and calibration of an Ist-Rees laser spectrum analyzer
Teardown, experiments and calibration of an Ist-Rees laser spectrum analyzer
IR thermometer hacked into an IR camera
IR thermometer hacked into an IR camera
Real Time Planet Tracking System
Real Time Planet Tracking System
Bookcase automatically opens to reveal secret lair
Bookcase automatically opens to reveal secret lair
PCI Express High Performance Reference Design
PCI Express High Performance Reference Design
Muxtronics open source 12V powerbank
Muxtronics open source 12V powerbank
TI’s Little Professor
TI’s Little Professor
App note: Testing inductors at application frequencies
App note: Testing inductors at application frequencies
1968 Princeton Reverb Repairs
1968 Princeton Reverb Repairs

Top




Shares