Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Switching regulator forms constant-current source

Switching regulator forms constant-current source

Many applications require current sources rather than voltage sources. When you need a high-current source, using a linear regulator is inadvisable, because of the high power dissipation in the series resistor.
To solve the wasted-power problem, you can use a switch-mode regulator. The circuit of Figure 1 uses IC1, an LM2576 adjustable regulator. It needs only a few external elements and has an adjustable sensing input, which you use for controlling the output current. Resistor RSC is a current sensor. IC2A, one-half of a TL082 op amp, operates as a difference amplifier. When R1=R2=R3=R4, the output voltage is proportional to the current flowing in RSC. Good common-mode rejection and a wide common-mode voltage range are important, because the amplifier works with large, changing common-mode signals.

The second half of the TL082 op amp, IC2B, operates as a noninverting amplifier. The required gain depends on the output current you need: G=VREF/VSC, where G is gain, VREF is the voltage on the sensing input of the LM2576, and VSC is the voltage across RSC. Note that VSC=IOUTRSC, where IOUT is the output current. For example, if IOUT=2A and RSC=0.12Ù, then VSC=0.24V. Typically, for the LM2576, VREF=1.237V. So, you can obtain the gain of the noninverting amplifier from the gain equation: G=5.15V/V. The overall gain of the noninverting amplifier is G=1+R7/R6. If R7=100 kÙ and G=5.15, you can solve for R6 (24.1 kÙ). When you need a precise output current, you can replace the fixed resistor, R6,with a series connection of a fixed resistor and a potentiometer. Tests showed that the output current is practically constant with varying loads. For example, the 2A output current changed less than 1% for an output-voltage range of 0.3 to 15V.

Visit Here for more.

 

More Articles to Read

App note: Testing inductors at application frequencies
App note: Testing inductors at application frequencies
1968 Princeton Reverb Repairs
1968 Princeton Reverb Repairs
Skill Sunday: Power Over Ethernet for Arduino
Skill Sunday: Power Over Ethernet for Arduino
More on Color TFT Displays ~ The Big Ones — 240 X 320
More on Color TFT Displays ~ The Big Ones — 240 X 320
Magnetic Rotary Encoder
Magnetic Rotary Encoder
Vertical Pole Climbing Robot
Vertical Pole Climbing Robot
ESP8266 Weather Station Projects
ESP8266 Weather Station Projects
Single tube Lethal Nixie clock
Single tube Lethal Nixie clock
How to make a simple 1 watt audio amplifier (LM386 based)
How to make a simple 1 watt audio amplifier (LM386 based)
Flashing Binaries to DRA7xx Factory Boards Using Device Firmware Upgrade
Flashing Binaries to DRA7xx Factory Boards Using Device Firmware Upgrade

Top




Shares