Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Simple VGA video adapter with ATmega AVR

Simple VGA video adapter with ATmega AVR

This project describes how to create video or vga signal using a 8-bit AVR microcontroller.
With commonly available microcontrollers like the Mega8, Mega16 and similar, and with a minimum of external components I wanted a design that would be capable of displaying at least 15×15 characters on a VGA monitor using standard VGA frequencies. The data itself is to be received by the microcontroller via its USART port. All using a 16 Mhz clock for the AVR.

Initial calculations showed that the the AVR 8-bit microcontroller from ATMEL, with its 16Mhz clock speed providing approximately 16 MIPS was a good candidate for further research. Also note that newer AVRs such as the Mega48, Mega88 and Mega168 will officially support clock rates upto 20 Mhz. Therefore I concluded that with a clock of 16 Mhz I could achieve something in the order of 8 Mhz speed of data being transferred out of a port. I also chose the AVR as I had already built up quite a body of experience with it and so I began work of the project.

After approximately two to three months of research, I present you the fruits of my labour!

Characteristics of the project:

VGA-terminal:

Quantity of symbols: 20 lines by 20 characters.
The resolution of a character matrix: 8×12 points
Supported code page: WIN 1251
Formed signal: VGA
The resolution: 640×480
Frequency of vertical synchronization: 60Hz
Speed of exchange UART 19200 bps

Video terminal:

Quantity of symbols: 20 lines by 38 characters.
The resolution of an individual character matrix: 8×12 points
Supported code page: WIN 1251
Formed signal: Composite Video (PAL/SECAM)
Resolution: 625 lines (interlaced)
Frequency of vertical synchronization: 50Hz
Speed of exchange UART 19200 bps

Type of the used microcontroller: Mega8, Mega16, Mega32, Mega8535, etc. Clock frequency of the microcontroller standard – 16Mhz.

Visit Here for more.

 

More Articles to Read

Single-Sided USB Charger
Single-Sided USB Charger
A FPGA controlled RGB LED MATRIX for Incredible Effects – the Hardware
A FPGA controlled RGB LED MATRIX for Incredible Effects – the Hardware
Using Nanotimers to Reduce IoT System Power Consumption by an Order of Magnitude
Using Nanotimers to Reduce IoT System Power Consumption by an Order of Magnitude
Replace a microwave’s beeping with the Windows XP startup sound
Replace a microwave’s beeping with the Windows XP startup sound
A DIY Laser Scanning Microscope
A DIY Laser Scanning Microscope
Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor
Reverse-engineering the surprisingly advanced ALU of the 8008 microprocessor
ESP8266 LED lighting: QuinLED v2.6 PCB
ESP8266 LED lighting: QuinLED v2.6 PCB
Switching LVDS Graphics in a Laptop Computer
Switching LVDS Graphics in a Laptop Computer
Teleknitting: TV-based string art
Teleknitting: TV-based string art
DIY Bubble Machine
DIY Bubble Machine
Start your day with Nerf target practice!
Start your day with Nerf target practice!
Teardown of a Peaktech 6225A
Teardown of a Peaktech 6225A

Top




Shares