Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Switching Solenoid Driver

Switching Solenoid Driver

It operates by PWM – well, actually by PFM – Pulse Frequency Modulation. At power up, C1 charges up via D1 and R1. R2 will conduct, pulling the base of the emitter follower, Tr2, up and feeding gate voltage to the MOSFET.
Tr4. Clearly the circuits in an analogue region during power-up, but as this is intended for use on a high voltage supply, power-up is pretty quick.

As Tr4 conducts, current is fed through R5 and the coil of the Solenoid. The current builds up, until the voltage across R5 becomes high enough to turn on Tr1.

Tr1 and Tr3 are a complementary feedback pair, so when Tr1 conducts, they turn each other on in a snap action switch and the MOSFET gate gets turned hard off.

The current in the solenoid coil is forced (by the inductance) to keep flowing. It does so via D3 and R4.

But the current into Tr1’s base is the sum of the currents through R4 and Tr3. R2’s current flows through Tr1, so none flows in Tr2, so Tr3 current (after the bate has discharged) is only the current through R3. So the current through R5 must drop by this amount before it is insufficient to keep Tr1 conducting. This current is caused by the sensed relay current flowing through R5, so the ratio of R3 to R4 sets the hysteresis.

When there is insufficient current to keep Tr1 conducting, it turns off and the gate is again pulled high by R5 and Tr2, turning the MOSFET on. It slams the supply voltage across the relay coil, building up the current. Clearly the rate of current build-up will depend on the supply voltage, so at low voltages, the MOSFET turns on for a longer time and at high voltages, a shorter time.

The time during which the MOSFET is off is dependant on the relay coil and is constant, whilst the on time varies, altering the frequency.

Visit Here for more.







 

More Articles to Read

Scalar Network Analyser Jr
Scalar Network Analyser Jr
An Arduino-controlled automated whiskey distillery
An Arduino-controlled automated whiskey distillery
The Rex800 looks like a dinosaur Terminator
The Rex800 looks like a dinosaur Terminator
Home Environment Monitor
Home Environment Monitor
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
App note: Noise analysis for high-speed op amps
App note: Noise analysis for high-speed op amps
Skill Sunday: Arrays
Skill Sunday: Arrays
App note: Infrared remote control implementation with MSP430FR4xx
App note: Infrared remote control implementation with MSP430FR4xx
Gesture Controlled Smart Home
Gesture Controlled Smart Home
Design for a Wideband, Differential Transimpedance DAC Output
Design for a Wideband, Differential Transimpedance DAC Output
Wrist thrusters let you fly through the water effortlessly
Wrist thrusters let you fly through the water effortlessly
Bertan/Spellman 225-20R HV power supply teardown
Bertan/Spellman 225-20R HV power supply teardown
Blinking Christmas Lights
Blinking Christmas Lights
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adjusting clock with alarm, hygrometer & thermometer on 1.8″ ST7735 display
Adding an “extra sense” with rangefinders
Adding an “extra sense” with rangefinders
This wireless game controller looks like a rug
This wireless game controller looks like a rug
How to run your ESP8266 for years on a battery
How to run your ESP8266 for years on a battery
Calibration of a 3-Phase Energy Meter Board on the ADE7754
Calibration of a 3-Phase Energy Meter Board on the ADE7754
Making beats on a tiny Arduino DJ controller
Making beats on a tiny Arduino DJ controller

Top


Shares