Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Interfacing a color TFT display with the PIC32MX250F128B

Interfacing a color TFT display with the PIC32MX250F128B

I have been working on interfacing the PIC32MX250F128B with a small 2.2″ TFT display from Adafruit. It’s a nice little display that is fairly easy to communicate with, using SPI communication. The display I’m using is: http://www.adafruit.com/product/1480

Adafruit provides nice open-source libraries for their products. However, they are for Arduino and thus cannot be directly reused for the PIC32. I went through the library and ported it over for the PIC32, in C. I have attached my project file as a .zip file and you can download it to go through the library header and source files, as well as the demo code. I’ve tried heavily commenting the code so that it is self-explanatory.

As far as hardware goes, with the demo code, the pin connections for the display are:

BL (backlight): I left it unconnected, but you can connect it to 3.3V for backlight.
SCK: connected to RB14 on the PIC
MISO: left unconnected, since I’m not reading anything from the screen
MOSI: connected to RB11 on the PIC
CS: connected to RB1 on the PIC
SDCS: left unconnected as I’m not using the microSD card for this
RST: connected to RB2 on the PIC
D/C: connected to RB0 on the PIC
VIN: connected to 3.3V supply
GND: connected to gnd

The pins I used are defined in the code and you can easily change them as required.

I used my custom proto-board for testing on a breadboard. You can find details here: http://tahmidmc.blogspot.com/2014/02/pic32-proto-board-details-schematic-pcb.html

Here’s a video showing the PIC32 running the demo code and doing some simple graphics on the screen. You can see that it runs fairly quickly and quite smoothly.

Project files with all source and header files:
https://drive.google.com/file/d/0B4SoPFPRNziHdksweU1vUkZ4SHM/view?usp=sharing
http://www.4shared.com/zip/O-LcEU0Ace/Adafruit_TFTX.html

If you have any comments, questions or suggestions, do let me know!

Read more Here







 

More Articles to Read

Peeqo is a desktop bot that communicates through GIFs
Peeqo is a desktop bot that communicates through GIFs
Using a Programmable Input Multiplier to Minimize Integer Boundary Spurs
Using a Programmable Input Multiplier to Minimize Integer Boundary Spurs
Serial seven segment LED display shield
Serial seven segment LED display shield
G-code controlled drawing plotter
G-code controlled drawing plotter
An Arduino round word clock
An Arduino round word clock
The Sandwich-o-Matic will make your lunch automatically
The Sandwich-o-Matic will make your lunch automatically
Scalar Network Analyser Jr
Scalar Network Analyser Jr
An Arduino-controlled automated whiskey distillery
An Arduino-controlled automated whiskey distillery
The Rex800 looks like a dinosaur Terminator
The Rex800 looks like a dinosaur Terminator
Home Environment Monitor
Home Environment Monitor
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
Understanding the Operation of the Frequency Synthesizer in Maxim’s RF Transceivers
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
App note: EPIC: Electro-Pyrotechnic Initiator Chip Resistor
Noisy ESP8266
Noisy ESP8266
App note: Noise analysis for high-speed op amps
App note: Noise analysis for high-speed op amps
Skill Sunday: Arrays
Skill Sunday: Arrays
App note: Infrared remote control implementation with MSP430FR4xx
App note: Infrared remote control implementation with MSP430FR4xx
Gesture Controlled Smart Home
Gesture Controlled Smart Home
Design for a Wideband, Differential Transimpedance DAC Output
Design for a Wideband, Differential Transimpedance DAC Output
Wrist thrusters let you fly through the water effortlessly
Wrist thrusters let you fly through the water effortlessly
Bertan/Spellman 225-20R HV power supply teardown
Bertan/Spellman 225-20R HV power supply teardown

Top


Shares