Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

Smartcard-controlled Relay

Smartcard-controlled Relay

This design uses a smart card to enable a relay. It fires a relay when a card with the correct code is inserted. A Nutchip recognizes its mating smart card among thousand similar ones and the smart card sends a digital code among thousands different codes.
This card-activated realy requires just an handful of parts and is very simple. The active components in addition to the Nutchip are a 74HC00, a reset generator (IC3) and a transistor for relay switching.

Thereset integrated circuit IC3, an MC34064 from Motorola, guarantees a clean Nutchip RESET even in presence of electric noise coming from the power network. Its duty consists of discharging the capacitor C2 as fast as possible when a power drop is detected.

The Nutchip (IC1) is the heart of the device. Nutchip output OUT1 drives an LED (LD1) which is in series to a current-limiting resistor (R3). A separate output is used for dirving the relay (RELAY1) through a transistorized relay driver stage (TR1, R2, D1). The transistor works as an electronic switch, amplifying Nutchip output current from tenths of mA to tens of mA – a level suitable for driving the relay coil. Diode D1 protects the circuits from high voltages that are induced on the coil during switchoff.

But let’s introduce the smartcard. We choose a “Funcard Purple”: this is the usual name for a card embedding a powerful processor, an Atmel AT90S8515, and a serial EEPROM memory. Other “Funcards” similar to the “Purple” are the “Funcard Prussian” and “Funcard Prussian 256”: these should be theoretically compatible, although more expensive. However, please note that we have not tried them, so take our word at your own risk.

Visit Here for more.

 

More Articles to Read

App note: Testing inductors at application frequencies
App note: Testing inductors at application frequencies
1968 Princeton Reverb Repairs
1968 Princeton Reverb Repairs
Skill Sunday: Power Over Ethernet for Arduino
Skill Sunday: Power Over Ethernet for Arduino
More on Color TFT Displays ~ The Big Ones — 240 X 320
More on Color TFT Displays ~ The Big Ones — 240 X 320
Magnetic Rotary Encoder
Magnetic Rotary Encoder
Vertical Pole Climbing Robot
Vertical Pole Climbing Robot
ESP8266 Weather Station Projects
ESP8266 Weather Station Projects
Single tube Lethal Nixie clock
Single tube Lethal Nixie clock
How to make a simple 1 watt audio amplifier (LM386 based)
How to make a simple 1 watt audio amplifier (LM386 based)
Flashing Binaries to DRA7xx Factory Boards Using Device Firmware Upgrade
Flashing Binaries to DRA7xx Factory Boards Using Device Firmware Upgrade

Top




Shares