Organize and Share your Electronics the way you want. Sign-Up for a free account now. It takes only 30 seconds!

One Transistor FM Radio Project

One Transistor FM Radio Project

AM radio circuits and kits abound. Some work quite well. But, look around and you will find virtually no FM radio kits. Certainly, there are no simple FM radio kits. The simple FM radio circuit got lost during the transition from vacuum tubes to transistors.
Layout

Because this is a superregenerative design, component layout can be very important. The tuning capacitor, C3, has three leads. Only the outer two leads are used; the middle lead of C3 is not connected. Arrange L1 fairly close to C3, but keep it away from where your hand will be. If your hand is too close to L1 while you tune the radio, it will make tuning very difficult.

winding L1

L1 sets the frequency of the radio, acts as the antenna, and is the primary adjustment for super-regeneration. Although it has many important jobs, it is easy to construct. Get any cylindrical object that is just under 1/2 inch (13 mm) in diameter. I used a thick pencil from my son’s grade school class, but a magic marker or large drill bit work just fine. #20 bare solid wire works the best, but any wire that holds its shape will do. Wind 6 turns tightly, side-by-side, on the cylinder, then slip the wire off. Spread the windings apart from each other so the whole coil is just under an inch (2.5 cm) long. Find the midpoint and solder a small wire for C2 there. Mount the ends of the wire on your circuit board keeping some clearance between the coil and the circuit board.

a tuning knob for C3

C3 does not come with a knob and I have not found a source. A knob is important to keep your hand away from the capacitor and coil when you tune in stations. The solution is to use a #4 nylon screw. Twist the nylon screw into the threads of the C3 tuning handle. The #4 screw is the wrong thread pitch and will jam (bind) in the threads. This is what you want to happen. Tighten the screw just enough so it stays put as you tune the capacitor. The resulting arrangement works quite well.

Adjustment

If the radio is wired correctly, there are three possible things you can hear when you turn it on: 1) a radio station, 2) a rushing noise, 3) a squeal, and 4) nothing. If you got a radio station, you are in good shape. Use another FM radio to see where you are on the FM band. You can change the tuning range of C3 by squeezing L1 or change C1. If you hear a rushing noise, you will probably be able to tune in a station. Try the tuning control and see what you get. If you hear a squeal or hear nothing, then the circuit is oscillating too little or too much. Try spreading or compressing L1. Double check your connections. If you don’t make any progress, then you need to change R4. Replace R4 with a 20K or larger potentiometer (up to 50K). A trimmer potentiometer is best. Adjust R4 until you can reliably tune in stations. Once the circuit is working, you can remove the potentiometer, measure its value, and replace it with a fixed resistor. Some people might want to build the set from the start with a trimmer potentiometer in place (e.g., Mouser 569-72PM-25K).

Substituting other components

Many of the parts are fairly common and might already be in your junk box. Only certain component values are critical. The RF choke should be in the range of 20 to 30 uh, although values from15 to 40 uh might work. The tuning capacitor value is not critical, but if you use values below 50 pf you should reduce or remove C1. The circuit is designed for the high impedance type earphone. Normal earphones can be used, but the battery drain is much greater and the circuit must be changed. To use normal earphones, change R3 to 180 ohms. Q1 can be replace with any high-frequency N-channel JFET transistor, but only the 2N4416, 2N4416A, and J310 have been tested. A MPF102 probably will work. C2 is not too critical; any value from 18 to 27 pf will work. C7 is fairly critical. You can use a .005 or .0047 uf, but don’t change it much more than that.

Improved design for more audio gain

Chris Iwata recommended some design changes that greatly improve the audio circuit, making it strong enough for regular earphones or even a small speaker. The same FAR printed circuit board can be used with some modifications. The circuit board is important to make sure the tuning end of the radio works properly, so the audio amplifier changes can be squeezed onto the circuit board without fear of wrecking radio operation. Look closely at the new schematic for the new components and some changed component values.

Visit Here for more.







 

More Articles to Read

An Arduino laser pinball machine
An Arduino laser pinball machine
CTCSS fingerprinting: A method for transmitter identification
CTCSS fingerprinting: A method for transmitter identification
TI DLP® Pico™ Technology for Aftermarket Head-up Displays
TI DLP® Pico™ Technology for Aftermarket Head-up Displays
Brute force computation for cheap log digital potentiometer
Brute force computation for cheap log digital potentiometer
Smart "Homer"
Smart "Homer"
A DIY Segway-style vehicle
A DIY Segway-style vehicle
Superbeta transistors inside: Die photos and analysis of the LM108 op amp
Superbeta transistors inside: Die photos and analysis of the LM108 op amp
Peeqo is a desktop bot that communicates through GIFs
Peeqo is a desktop bot that communicates through GIFs
Using a Programmable Input Multiplier to Minimize Integer Boundary Spurs
Using a Programmable Input Multiplier to Minimize Integer Boundary Spurs
Serial seven segment LED display shield
Serial seven segment LED display shield

Top


Shares